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  errors are expensive … 
  annual cost of software errors to US economy is $ ~60B [NIST’02] 

software is  
everywhere 



main approaches to finding errors 

•  model checking 
–  automatic, exhaustive  
–  scalability issues; reported errors may be spurious 

•  static analysis 
–  automatic, scalable, exhaustive 
–  reported errors may be spurious 

•  testing  
–  reported errors are real  
–  may miss errors 
–  well accepted technique; state of practice 



our approach 

combine model checking and symbolic execution  
for test case generation 



Model Checking vs Testing 

OK 
testing / simulation 

error  

OK 

test oracle 

model checking 

error trace 
Line 5: … 
Line 12: … 
… 
Line 41:… 
Line 47:… 

void add(Object o) { 
 buffer[head] = o; 
 head = (head+1)%size; 
} 
 
Object take() { 
 … 
 tail=(tail+1)%size; 
 return buffer[tail]; 
} 

program / model 

always(ϕ orψ) 

property 
  

void add(Object o) { 
 buffer[head] = o; 
 head = (head+1)%size; 
} 
 
Object take() { 
 … 
 tail=(tail+1)%size; 
 return buffer[tail]; 
} 

program / model 



Java PathFinder (JPF) 

•  Extensible virtual machine framework for Java bytecode verification: 
•  Workbench to implement all kinds of verification tools 
•  Typical use cases:  

–  software model checking (detection of deadlocks, races, assert errors) 
–  test case generation (symbolic execution) 
–  ... and many more  



Java PathFinder (JPF) 

•  JPF uses scalability enhancing mechanisms 
–  on-the-fly partial order reduction 
–  configurable search strategies 
–  user definable heuristics, choice generators 

•  Recipient of several awards  
–  NASA 2003, IBM 2007, FLC 2009 

•  Open sourced:  
http://babelfish.arc.nasa.gov/trac/jpf 

•  Largest application: 
–  Fujitsu (one million lines of code) 
 



Symbolic PathFinder (SPF) 

•  Combines symbolic execution, model checking  and constraint solving  
•  Applies to executable models and code 
•  Handles dynamic data structures, loops, recursion, multi-threading; 

arrays and strings 
•  Java PathFinder extension project 
     [TACAS’03, ISSTA’08, ASE’10] 

Error Report 

Systematic 
Analysis 

Sym Exe Tree 

Test 
Sequences 

Constraint 
Solving 

Java 
bytecode 



Symbolic PathFinder (SPF) 

Users: 
•  Academia (uiuc.edu, unl.edu, utexas.edu, byu.edu, umn.edu, 

Stellenbosch Za, Waterloo Ca, Charles University Prague Cz,  …) 
•  Industry (Fujitsu) 
•  NASA (Ames, Langley) 

Error Report 

Systematic 
Analysis 

Sym Exe Tree 

Test 
Sequences 

Constraint 
Solving 

Java 
bytecode 



    if ((pres < pres_min) || 	

         (pres > pres_max)) {	


	
…	

   } else {	

            …	

   }	


    if ((pres < pres_min)) || 	

         (pres > pres_max)) {	


	
…	

   } else {	

            …	

   }	


    if ((pres < pres_min) || 	

         (pres > pres_max)) {	


	
…	

   } else {	

            …	

   }	


Symbolic Execution  
Systematic Path Exploration 

Generation and Solving of Numeric Constraints 

         if( (pres < pres_min) || (pres > pres_max)) {	

	
…	


        } else {	

            …	

        }	


[pres = 460; pres_min = 640; pres_max = 960]	


[pres = Sym1; pres_min = MIN; pres_max = MAX] [path condition PC: TRUE]	


[PC1: Sym1< MIN]	
 [PC2: Sym1 > MAX]	


[PC3: Sym1 >= MIN && 	

Sym1 <= MAX 	


Solve path conditions PC1, PC2, PC3 → test inputs 



Symbolic Execution 
 •  King [Comm. ACM 1976], Clarke [IEEE TSE 1976] 

•  Analysis of programs with unspecified inputs 
–  Execute a program on symbolic inputs 

•  Symbolic states represent sets of concrete states 
•  For each path, build path condition 

–  Condition on inputs – for the execution to follow that path 
–  Check path condition satisfiability – explore only feasible paths 

•  Symbolic state 
–  Symbolic values/expressions for variables 
–  Path condition 
–  Program counter 



Symbolic Execution 
 Received renewed interest in recent years  

… due to 
•  Algorithmic advances 
•  Increased availability of computational power and decision 

procedures 
Applications: 
•  Test-case generation, error detection, … 
Tools, many open-source 
•  UIUC: CUTE, jCUTE, Stanford: EXE, KLEE, UC Berkeley: CREST, 

BitBlaze 
•  Microsoft’s Pex, SAGE, YOGI, PREfix 
•  NASA’s Symbolic (Java) Pathfinder 
•  IBM’s Apollo, Parasoft’s testing tools etc. 



x = 1, y = 0	


1 > 0 ? true	


x = 1 + 0 = 1	


y = 1 – 0 = 1	


x = 1 – 1 = 0	


0 > 1 ? false	


int x, y;	


if (x > y) {	


  x = x + y;	


  y = x – y;	


  x = x – y;	


  if (x > y)	


    assert false;	


}	


Concrete Execution Path	
Code that swaps 2 integers	

Example – Standard Execution 



Example – Symbolic Execution 

[PC:true]x = X,y = Y	


[PC:true] X > Y ?	


[PC:X>Y]y = X+Y–Y = X	


[PC:X>Y]x = X+Y–X = Y	


[PC:X>Y]Y>X ?	


int x, y;	


if (x > y) {	


  x = x + y;	


  y = x – y;	


  x = x – y;	


  if (x > y)	


    assert false;	


}	


Code that swaps 2 integers	
 Symbolic Execution Tree	


[PC:X≤Y]END	
 [PC:X>Y]x= X+Y	

false	
 true	


[PC:X>Y∧Y≤X]END	
 [PC:X>Y∧Y>X]END	

false	
 true	


path condition	


False!	


Solve PCs: obtain test inputs 



Java PathFinder (JPF) used for systematic exploration 
•  symbolic execution tree 
•  different heap configurations 

–  lazy initialization for input data structures [TACAS’03] 
–  non-determinism handles aliasing in input data structures  

•  multi-threading 
•  property checking 
•  backtracking – when PC un-satisfiable 
•  different search strategies (depth-first, breadth-first) 
 
Take advantage of JPF’s optimizations! 

Symbolic PathFinder (SPF) 

Combining Symbolic Execution with Model Checking 



•  No state matching performed  
–  Some abstract state matching 

•  Symbolic search space may be infinite due to loops, recursion 
–  We put a limit on the search depth  

 

Symbolic PathFinder (SPF) 

Combining Symbolic Execution with Model Checking 



Implementation 

•  Non-standard interpreter of byte-codes  
–  Replaces concrete execution semantics of byte-codes with 

symbolic execution 
–  Enables JPF-core to perform systematic symbolic analysis 

•  Attributes 
–  Symbolic information stored in attributes associated with the 

program data 
–  Propagated dynamically during symbolic execution 



Implementation 

•  Choice generators 
–  handle non-deterministic choices in branching conditions 

•  Listeners 
–  collect and print results: path conditions, test vectors or test 

sequences 
–  influence the search 

•  Native peers 
–  model native libraries 
–   e.g. capture Math library calls and send them to the 

constraint solver  

•  Mixed concrete-symbolic solving 



Example: IADD 

public class IADD extends 
Instruction { … 

 public Instruction execute(… 
ThreadInfo th){ 

 int v1 = th.pop(); 
 int v2 = th.pop(); 
 th.push(v1+v2,…); 
 return getNext(th); 

 } 
} 

public class IADD extends  
   ….bytecode.IADD { … 
 public Instruction execute(…  
   ThreadInfo th){ 
   Expression sym_v1 = ….getOperandAttr(0); 
   Expression sym_v2 = ….getOperandAttr(1); 
   if (sym_v1 == null && sym_v2 == null) 
     // both values are concrete 
     return super.execute(… th); 
   else { 

   int v1 = th.pop(); 
   int v2 = th.pop(); 
   th.push(0,…); // don’t care 
   … 
   ….setOperandAttr(Expression._plus( 
  sym_v1,sym_v2)); 
   return getNext(th); 

   } 
 } 
} 

Concrete execution of IADD byte-code: Symbolic execution of IADD byte-code: 



Example: IFGE 
public class IFGE extends 

Instruction { … 
 public Instruction execute(… 

ThreadInfo th){ 
 cond = (th.pop() >=0); 
 if (cond) 

     next = getTarget(); 
 else 

     next = getNext(th); 
 return next; 

 } 
} 

public class IFGE extends  
   ….bytecode.IFGE { … 
 public Instruction execute(…  
   ThreadInfo th){ 
   Expression sym_v = ….getOperandAttr(); 
   if (sym_v == null) 
     // the condition is concrete 
     return super.execute(… th); 
   else { 

  PCChoiceGen cg = new PCChoiceGen(2);… 
  cond = cg.getNextChoice()==0?false:true; 
  if (cond) { 

        pc._add_GE(sym_v,0); 
        next = getTarget(); 
     } 
     else { 
        pc._add_LT(sym_v,0); 
        next = getNext(th); 
     } 
     if (!pc.satisfiable()) … // JPF backtrack  
     else cg.setPC(pc); 
     return next; 
   } } } 

Concrete execution of IFGE byte-code: Symbolic execution of IFGE byte-code: 



Decision Procedures 

•  Choco, Coral, Yices, CVC3, Hampi, 
IASolver … 

•  Generic interface – easy to extend with 
new constraint solvers and decision 
procedures 



Mathematical functions 

Model-level interpretation 

Math.sin $x + 1 sin($x + 1) 

Symbolic expression  
w/ un-interpreted function handled 

directly by solver (Choco)  



•  Used to be a challenge 
•  Lazy initialization  [TACAS’03, SPIN’05] 
•  Non-determinism handles aliasing  

–  JPF explores different heap configurations explicitly 
•  Implementation: 

–  GETFIELD, GETSTATIC bytecode instructions modified 
–  listener prints input heap constraints and method effects 

(outputs) 

Input Data Structures 



Example 
class Node { 

int elem; 
Node next; 
 
Node swapNode() { 
    if (next != null) 
        if (elem > next.elem) { 
            Node t = next; 
            next = t.next; 
            t.next = this; 
            return t; 
        } 
    return this; 
} 

} 

? null 

E0 E1 

E0 

E0 E1 null 

E0 E1 ? 

E0 E1 

E0 E1 

Input list          +  Constraint Output list 

E0 > E1 

none 

E0 <= E1 

none 

E0 > E1 

E0 > E1 

E0 > E1 

E1 E0 ? 

E1 E0 

E1 E0 

E1 E0 null 

E0 E1 

E0 

? null 

NullPointerException  



Lazy Initialization 

E0 
next 

E1 
next 

t 
null 

t 
E0 

next 
E1 

next 
? 

next 
E0 

next 
E1 

t next E0 next E1 

next 

t 

E0 
next 

E1 
next 

t 

consider executing 
next = t.next; 

E0 E1 
next 

t 
null 

next 

t 
E0 E1 

next 
? 

next 
next 



Applications 

•  NASA control software [ISSTA’08] 
–  Manual testing: time consuming (~1 week) 
–  Guided random testing could not obtain full coverage 
–  SPF generated ~200 tests to obtain full coverage in <1min 
–  Found major bug in new version 

•  Polyglot [ISSTA’11, NFM’12] 
–  Analysis and test case generation for UML, Stateflow and Rhapsody 

models 
–  Pluggable semantics for different statechart formalisms 
–  Analyzed MER Arbiter, Ares-Orion communication 

•  Tactical Separation Assisted Flight Environment (T-SAFE) 
[NFM’11, ICST’12] 

–  Integration with CORAL for solving complex mathematical constraints 
•  Test case generation for Android apps 
•   … 

Orion orbits the moon  
(Image Credit: Lockheed Martin). 



Test Sequence Generation 

Java component 
(Binary Search Tree, 

UI) 

add(e) 

remove(e) 

find(e) 

Interface 

Generated test sequence: 
BinTree t = new BinTree();  
 t.add(1);  
 t.add(2);  
 t.remove(1); 

•  SymbolicSequenceListener generates JUnit tests: 
–   method sequences (up to user-specified depth) 
–   method parameters 

•   JUnit tests can be run directly by the developers 
•   Measure coverage 
•   Support for abstract state matching 
•   Extract specifications 



Testing the Onboard Abort Executive (OAE) 
Prototype for CEV ascent abort handling being developed by JSC GN&C 

Inputs 

Pick Highest Ranked Abort 

Checks Flight Rules  
to see if an abort must occur 

Select Feasible Aborts 

OAE Structure Results 
 
Baseline 
–  Manual testing: time consuming (~1 week) 
–  Guided random testing could not cover all aborts 
Symbolic PathFinder 
–  Generates tests to cover all aborts and flight rules 
–  Total execution time is < 1 min 
–  Test cases: 151 (some combinations infeasible)  
–  Errors: 1 (flight rules broken but no abort picked) 
–  Found major bug in new version of OAE 
–  Flight Rules: 27 / 27 covered   
–  Aborts: 7 / 7 covered 
–  Size of input data: 27 values per test case 

[ISSTA’08] 



Generated Test Cases and Constraints 

Test cases: 
// Covers Rule: FR A_2_A_2_B_1: Low Pressure Oxodizer Turbopump speed limit exceeded 
// Output: Abort:IBB 
CaseNum  1; 
CaseLine in.stage_speed=3621.0; 
CaseTime 57.0-102.0; 
 
// Covers Rule: FR A_2_A_2_A: Fuel injector pressure limit exceeded  
// Output: Abort:IBB 
CaseNum  3; 
CaseLine in.stage_pres=4301.0; 
CaseTime 57.0-102.0; 
… 
 

Constraints: 
 //Rule: FR A_2_A_1_A: stage1 engine chamber pressure limit exceeded Abort:IA 

PC (~60 constraints): 
in.geod_alt(9000) < 120000 && in.geod_alt(9000) < 38000 && in.geod_alt(9000) < 10000 &&  
in.pres_rate(-2) >= -2 && in.pres_rate(-2) >= -15 && 
in.roll_rate(40) <= 50 && in.yaw_rate(31) <= 41 && in.pitch_rate(70) <= 100 && … 



Polyglot 
•  Large programs such as NASA Exploration 

–  Multiple systems that interact via safety-critical protocols  
–  Designed with different Statechart variants 
–  A unified verification framework needed  

•  Polyglot 
–  Modeling and analysis for multiple Statechart formalisms 
–  Captures interactions between components 
–  Formal semantics that captures the variants of Statecharts 
–  Applied to JPL’s MER arbiter, Ares-Orion communication  

Collaboration w/ Vanderbilt University and University of Minnesota 

[ISSTA’11,NFM’12] 



Rhapsody 

IMPORT 

Simulink/Stateflow 

Pluggable Semantics 

Generic Execution Environment 

UML Rhapsody 

State machine model in Java 

EXPORT 

Symbolic PathFinder 

Stateflow 

Data interface 

Modeling /  
Intermediate Representation 
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32 

Test Generation for TTEthernet Protocol 

•  Fault tolerant version of Ethernet protocol  
•  Used by NASA in space networks  
•  Assure reliable network communications.  

•  Developed PVS model of basic version of the 
TTEthernet protocol  

•  Framework for translating models into Java 
multi-threaded code 

SPF analysis 
•  filtering of test cases to satisfy the various fault 

hypothesis 
•  verification of fault-tolerant properties 
•  demonstrated test case generation for 

TTEthernet’s Single Fault Hypothesis 
 
[w/ NASA Langley] 
 

Shown: Minimal configuration for testing           
agreement in TTEthernet 



Differential Symbolic Execution – NASA Langley 
37

Vj 

source

diff Vi Vj 

common

Extended 
Symbolic 
Execution

Pre-computed
Summaries

Extended 
Symbolic 
Execution

Vi 

Symbolic 
Summary

Vj 

Symbolic 
Summary

DSE Step 1 DSE Step 2

Check 
Equivalence

Generate 
Deltas

Vi Vj 

DSE Step 3

Vi  Vj 

Client 
Analyses

Vi 

source

Impact Analysis
Test Suite Evolution
Refactoring Assurance
Change Characterization
Selective Re-certification
...

Figure 3.1: DSE Methodology

3.1 Methodology

The DSE methodology performs an automated form of differential program anal-

ysis [53, 79]. It combines advances in symbolic execution [1, 29, 58, 75, 76] with

over-approximating abstract summaries of unchanged sections of code, to detect pro-

gram differences and precisely characterize the execution behaviors of one program

version relative to another. Informally, a program’s execution behavior refers to an

execution path and is represented by pairing a description of input values with the

effects of execution, i.e., the values computed for a given set of inputs. DSE is capable

of (a) demonstrating that two program versions are equivalent, or, if they are not,

(b) characterizing the behavioral differences between versions by identifying the sets

of inputs that cause a different effect.

The DSE methodology is performed in three main steps as illustrated in Figure 3.1.

Given two versions of a program, Vi and Vj, DSE first uses a light-weight static

analysis technique, e.g., source file or AST diff, to identify common code sequences,

i.e., sections of code which are unchanged between program versions. The goal of

this step is to reduce analysis cost by inferring common program behaviors using

�  Computes logical difference between two program versions 
�  [FSE’08, Person et al PLDI’11] 



 
challenges 



handling complex mathematical constraints 

sqrt(pow(((x1 + (e1 * (cos(x4) – cos((x4 + (((1.0 * (((c1 * x5) * (e2/c2))/x6)) * x2)/
e1)))))) – (((e2/c2)) * (1.0 – cos((c1 * x5))))),2.0)) > 999.0  & (c1 * x5) > 0.0 &  
x3 > 0.0 & x6 > 0.0 & c1 = 0.017… & 
c2 = 68443.0 & e1 = ((pow(x2,2.0)/tan((c1*x3)))/c2) & 
e2 = pow(x6,2.0)/tan(c1*x3) 

Example constraint generated for a module from TSAFE 
(Tactical Separation Assisted Flight Environment) 



Coral Solver 

•  Target application of solver: programs that  
–  Use floating-point arithmetic 
–  Call math functions 

{x1=100.0, x2=98.48…, x3=3.08…E-11, …} 

TSAFE example 

Input: sqrt(pow(((x1 + (e1 * (cos(x4) – … 
Output:  

Approach: combine meta-heuristic search and 
interval solving [NFM’11, ICST’12] 



Coral 

http://pan.cin.ufpe.br/coral  



path explosion 

parallel symbolic execution [ISSTA’10] 
symbolic execution very amenable to parallelization 

no sharing between sub-trees 
 



Balancing partitions 

Nicely Balanced – linear speedup Poorly Balanced – no speedup 

�  Solutions 
�  Simple static partitioning [ISSTA’10] 
�  Dynamic partitioning [Andrew King’s Masters Thesis at KSU, 

Cloud9 at EPFL, Fujitsu] 



Simple Static Partitioning 
�  Static partitioning of tree with light dynamic load balancing 

�  Flexible, little communication overhead 

�  Constraint-based partitioning 
�  Constraints used as initial pre-conditions 
�  Constraints are disjoint and complete 

�  Approach 
�  Shallow symbolic execution => produces large number of constraints 
�  Constraints selection – according to frequency of variables 
�  Combinatorial partition creation 

�  Intuition 
�  Commonly used variables likely to partition state space in useful ways 

�  Close to linear speed-up when using 128 workers  



Distributed symbolic execution over cloud 
•  Adaptive dynamic partitioning 
•  Heuristics to partition jobs on the fly based on system resources and  job 

characteristics and history 
•  Close to linear speed-up is possible in > 90% of the cases 

       

Fujitsu applications 

Scheduler  
Node 

Worker Nodes 

N1 N2 N3 N4 

Job Queue	

J1	 J2	 J3	 J4	 J5	

status	jobs	

Available Resource List	

N3 N4 

Ini$aliza$on	  
Path	  Condi$on	  

New	  Jobs	  

Computa$on	  
at	  this	  node	  

Termina$on	  
Path	  
Condi$on	  

thanks Fujitsu 



Testing web applications – challenge 
•  Handling complex constraints involving strings and numerics 
•  e.g.:  string s, q;  integer a, b; 

s.equals(q) && s.startswith(“uvw”) && q.endswith(“xyz”) && s.length()
<a && (a+b)<6 && b>0 Unsatisfiable ! 

Solution – string solver 
•  Maintain separate constraint set for Integer/Boolean and Real – 

represented as equations 
•  Maintain separate constraint set for string variables – represented as 

FSMs or regular expressions 
•  Pass learned constraints from one domain to another and iterate to 

fixed point or time out 

Fujitsu applications 

Fujitsu technology handles symbolic execution and test case generation 
for web applications which uses String input variables extensively 

thanks Fujitsu 



 
void test(int x, int y) { 
    if (x > 0) { 
      if (y == hash(x)) 
        S0; 
      else 
        S1; 
      if (x > 3 && y > 10) 
        S3; 
      else 
        S4; 
    } 
} 

S0, S1, S3, S4 =  
statements we wish to cover 

hash is native or can not be 
handled by decision procedure 

handling native code 



hash is native or can not be 
handled by decision procedure 

S0, S1, S3, S4 =  
statements we wish to cover 
 
Symbolic Execution 
Can not handle it! 
 
Solution: 
Mixed concrete-symbolic 
solving [ISSTA’11] 
 

handling native code 
 
void test(int x, int y) { 
    if (x > 0) { 
      if (y == hash(x)) 
        S0; 
      else 
        S1; 
      if (x > 3 && y > 10) 
        S3; 
      else 
        S4; 
    } 
} 



Mixed Concrete-Symbolic Solving 

�  Use un-interpreted functions for external library calls 

�  Split path condition PC into: 
�  simplePC – solvable constraints 
�  complexPC – non-linear constraints with un-interpreted 

functions 

�  Solve simplePC 
�  Use obtained solutions to simplify complexPC 

�  Check the result again for satisfiability 



Mixed Concrete-Symbolic Solving 
  

    Assume hash(x) = 10 *x: 
PC: X>3 ∧	 Y>10 ∧	 Y=hash(X) 
 
          simplePC        complexPC 
 
Solve simplePC 
Use solution X=4 to compute h(4)=40 
Simplify complexPC: Y=40 
Solve again:  

 simplified PC: X>3 ∧ Y>10 ∧	 Y=40 Satisfiable! 



example  

EXE results: stmt “S3” not covered DART results: path “S0;S4” not covered 

Mixed concrete-symbolic solving: all paths covered Example 

@Concrete("true")
@Partition({"x>3.0","x<=3.0"})
double hash(double x) {...}

void test(int x, int y) {
1: if (x > 0) {
2: if (y == hash(x))
3: S0;
4: else
5: S1;
6: if (x > 3 && y > 10)
7: //if (y > 10)
8: S3;
9: else
10: S4;

}
}

PC: true

S1

PC: X>3 & Y>10
& Y!=hash(X) 

PC: X<=0

Solve: x>3 & y>10
hash(4)=40
check:
x>3 & y>10 & y=40

& Y!=hash(X) & Y!=hash(X) 
PC: X>0 & X<=3PC: X>0 & X<=3

S3 S4

PC: X>0
& Y!=hash(X)

S4S3 S4

PC: X>0
& Y=hash(X)

PC: X>3 & Y>10
& Y=hash(X) & Y=hash(X) 

PC: X>0 & X<=3 

Solve x>0
hash(1)=10
check x>0 & y=10

S0

PC: X>0

x: X, y: Y

(a) (b)

S0

S4

PC: Y==10

PC: Y==10

PC: X<=0

x: X, y: Y
PC: true

PC: X>0Solve x>0
Fix x=1
hash(1)=10

S1

PC: Y!=10

PC: Y!=10

S4 Divergence!

PC: X<=0

x=0, y=0

PC: X<=0 PC: X>0

PC: X>0 & Y!=10

S1

PC: X>0 & Y!=10
& X<=3

S4

x=1, y=0
Solve x>0

hash(1)=10

PC: X>0

S1

PC: X>0

S1

PC: X>0

S0 S1

S4 S3 S3

S4

hash(4)=40

x=4, y=0
& x>3

Solve x>0 & y!=10

hash(4)=40

Solve x>0 & y!=40

x=4, y=11
& x>3 & y>10 x=4, y=40

Solve x>3 & y=40

hash(4)=40

x=1, y=40

hash(1)=10

Solve x>0 & y=40 & x<=3

PC: X>0 & Y!=40 PC: X>0 & Y!=40 PC: X>0 & Y!=10

PC: X>0

PC: X>0 & Y=40

PC: X>0 & Y!=40
& X>3 & Y<=10

PC: X>0 & Y!=40
& X>3 & Y>10 & X>3 & Y>10

PC: X>0 & Y=40

(c) (d)

Figure 1: (a) An illustrative example program. (b) Paths explored using our technique; all the statements
and paths are covered. (c) Paths explored using EXE; statement “S3” is not covered. (d) Paths explored
using DART; all statements are covered but path “S0, S4” is not covered.

does.
Let us look at this example in more detail. The path

condition PC to reach the execution of “S0” at line #4 has
the value X>0 & Y=hash(X), where X and Y denote the two
input symbolic values for method test. Note that we use
upper case letters to denote the symbolic representation of
the equivalent variables defined in lower cases letters. “Clas-
sical” symbolic execution would get stuck given our assump-
tion that the constraint solver cannot handle hash directly
so it cannot generate two values for the inputs x and y that
drive the execution of test through the then branch of the
conditional at line #3. On the other hand, DART starts
execution by generating random values for inputs x and y.
If the concrete value of x, v, satisfies X>0; then DART can
easily generate a value for y that is equal to hash(v). The
value of hash(v) is known at run-time. If v does not satisfy
X>0, then DART performs an extra iteration where it first
solves X>0 and sets the value of x to the solution. DART
then re-executes the program and finds a value for y that
is equal to the run-time value of hash(x). By first picking
randomly and then fixing the value of x, DART can drive
the execution of test through different program paths.
Our goal is to achieve something similar to DART in the

context of “classical”, static symbolic execution. We want

to fall back on concrete values when the symbolic execution
encounters functions of the form hash, while still retaining
the advantages of our approach, i.e. allow back-tracking,
not requiring re-execution, handle multi-threading, perform
incremental solving etc.
One simple solution is to first solve the simple, “solvable”,

part of the PC, i.e. constraint X>0, and to use the obtained
solution (e.g. 1 for X) to “concretize” the value of x, i.e.
to fix the value of the input x to be 1 for the rest of the
execution. From that point on, execution involving concrete
values follows standard semantics, hence hash(1) will be
executed concretely and its result, hash(1)=10, will be used
for updating PC to Y=103, corresponding to the execution of
the then branch of the conditional at line #3. The negation
of the constraint, corresponding to the else branch, can also
be analyzed easily, so one can generate test cases to cover
the execution of both “S0” and “S1”.
While very simple, this approach can work well in practice

and it was used for example in the EXE tool [3]. However,
it has the drawback that by fixing some symbolic inputs to
concrete values, it may be overly restrictive so it may miss
covering some large parts of the code under analysis. For

3For simplicity we ignore here extra constraints that are due
to casting from int to double

@Concrete("true")
@Partition({"x>3.0","x<=3.0"})
double hash(double x) {...}

void test(int x, int y) {
1: if (x > 0) {
2: if (y == hash(x))
3: S0;
4: else
5: S1;
6: if (x > 3 && y > 10)
7: //if (y > 10)
8: S3;
9: else
10: S4;
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Figure 1: (a) An illustrative example program. (b) Paths explored using our technique; all the statements
and paths are covered. (c) Paths explored using EXE; statement “S3” is not covered. (d) Paths explored
using DART; all statements are covered but path “S0, S4” is not covered.

does.
Let us look at this example in more detail. The path

condition PC to reach the execution of “S0” at line #4 has
the value X>0 & Y=hash(X), where X and Y denote the two
input symbolic values for method test. Note that we use
upper case letters to denote the symbolic representation of
the equivalent variables defined in lower cases letters. “Clas-
sical” symbolic execution would get stuck given our assump-
tion that the constraint solver cannot handle hash directly
so it cannot generate two values for the inputs x and y that
drive the execution of test through the then branch of the
conditional at line #3. On the other hand, DART starts
execution by generating random values for inputs x and y.
If the concrete value of x, v, satisfies X>0; then DART can
easily generate a value for y that is equal to hash(v). The
value of hash(v) is known at run-time. If v does not satisfy
X>0, then DART performs an extra iteration where it first
solves X>0 and sets the value of x to the solution. DART
then re-executes the program and finds a value for y that
is equal to the run-time value of hash(x). By first picking
randomly and then fixing the value of x, DART can drive
the execution of test through different program paths.
Our goal is to achieve something similar to DART in the

context of “classical”, static symbolic execution. We want

to fall back on concrete values when the symbolic execution
encounters functions of the form hash, while still retaining
the advantages of our approach, i.e. allow back-tracking,
not requiring re-execution, handle multi-threading, perform
incremental solving etc.
One simple solution is to first solve the simple, “solvable”,

part of the PC, i.e. constraint X>0, and to use the obtained
solution (e.g. 1 for X) to “concretize” the value of x, i.e.
to fix the value of the input x to be 1 for the rest of the
execution. From that point on, execution involving concrete
values follows standard semantics, hence hash(1) will be
executed concretely and its result, hash(1)=10, will be used
for updating PC to Y=103, corresponding to the execution of
the then branch of the conditional at line #3. The negation
of the constraint, corresponding to the else branch, can also
be analyzed easily, so one can generate test cases to cover
the execution of both “S0” and “S1”.
While very simple, this approach can work well in practice

and it was used for example in the EXE tool [3]. However,
it has the drawback that by fixing some symbolic inputs to
concrete values, it may be overly restrictive so it may miss
covering some large parts of the code under analysis. For

3For simplicity we ignore here extra constraints that are due
to casting from int to double

@Concrete("true")
@Partition({"x>3.0","x<=3.0"})
double hash(double x) {...}

void test(int x, int y) {
1: if (x > 0) {
2: if (y == hash(x))
3: S0;
4: else
5: S1;
6: if (x > 3 && y > 10)
7: //if (y > 10)
8: S3;
9: else
10: S4;
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Figure 1: (a) An illustrative example program. (b) Paths explored using our technique; all the statements
and paths are covered. (c) Paths explored using EXE; statement “S3” is not covered. (d) Paths explored
using DART; all statements are covered but path “S0, S4” is not covered.

does.
Let us look at this example in more detail. The path

condition PC to reach the execution of “S0” at line #4 has
the value X>0 & Y=hash(X), where X and Y denote the two
input symbolic values for method test. Note that we use
upper case letters to denote the symbolic representation of
the equivalent variables defined in lower cases letters. “Clas-
sical” symbolic execution would get stuck given our assump-
tion that the constraint solver cannot handle hash directly
so it cannot generate two values for the inputs x and y that
drive the execution of test through the then branch of the
conditional at line #3. On the other hand, DART starts
execution by generating random values for inputs x and y.
If the concrete value of x, v, satisfies X>0; then DART can
easily generate a value for y that is equal to hash(v). The
value of hash(v) is known at run-time. If v does not satisfy
X>0, then DART performs an extra iteration where it first
solves X>0 and sets the value of x to the solution. DART
then re-executes the program and finds a value for y that
is equal to the run-time value of hash(x). By first picking
randomly and then fixing the value of x, DART can drive
the execution of test through different program paths.
Our goal is to achieve something similar to DART in the

context of “classical”, static symbolic execution. We want

to fall back on concrete values when the symbolic execution
encounters functions of the form hash, while still retaining
the advantages of our approach, i.e. allow back-tracking,
not requiring re-execution, handle multi-threading, perform
incremental solving etc.
One simple solution is to first solve the simple, “solvable”,

part of the PC, i.e. constraint X>0, and to use the obtained
solution (e.g. 1 for X) to “concretize” the value of x, i.e.
to fix the value of the input x to be 1 for the rest of the
execution. From that point on, execution involving concrete
values follows standard semantics, hence hash(1) will be
executed concretely and its result, hash(1)=10, will be used
for updating PC to Y=103, corresponding to the execution of
the then branch of the conditional at line #3. The negation
of the constraint, corresponding to the else branch, can also
be analyzed easily, so one can generate test cases to cover
the execution of both “S0” and “S1”.
While very simple, this approach can work well in practice

and it was used for example in the EXE tool [3]. However,
it has the drawback that by fixing some symbolic inputs to
concrete values, it may be overly restrictive so it may miss
covering some large parts of the code under analysis. For

3For simplicity we ignore here extra constraints that are due
to casting from int to double

@Concrete("true")
@Partition({"x>3.0","x<=3.0"})
double hash(double x) {...}

void test(int x, int y) {
1: if (x > 0) {
2: if (y == hash(x))
3: S0;
4: else
5: S1;
6: if (x > 3 && y > 10)
7: //if (y > 10)
8: S3;
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does.
Let us look at this example in more detail. The path

condition PC to reach the execution of “S0” at line #4 has
the value X>0 & Y=hash(X), where X and Y denote the two
input symbolic values for method test. Note that we use
upper case letters to denote the symbolic representation of
the equivalent variables defined in lower cases letters. “Clas-
sical” symbolic execution would get stuck given our assump-
tion that the constraint solver cannot handle hash directly
so it cannot generate two values for the inputs x and y that
drive the execution of test through the then branch of the
conditional at line #3. On the other hand, DART starts
execution by generating random values for inputs x and y.
If the concrete value of x, v, satisfies X>0; then DART can
easily generate a value for y that is equal to hash(v). The
value of hash(v) is known at run-time. If v does not satisfy
X>0, then DART performs an extra iteration where it first
solves X>0 and sets the value of x to the solution. DART
then re-executes the program and finds a value for y that
is equal to the run-time value of hash(x). By first picking
randomly and then fixing the value of x, DART can drive
the execution of test through different program paths.
Our goal is to achieve something similar to DART in the

context of “classical”, static symbolic execution. We want

to fall back on concrete values when the symbolic execution
encounters functions of the form hash, while still retaining
the advantages of our approach, i.e. allow back-tracking,
not requiring re-execution, handle multi-threading, perform
incremental solving etc.
One simple solution is to first solve the simple, “solvable”,

part of the PC, i.e. constraint X>0, and to use the obtained
solution (e.g. 1 for X) to “concretize” the value of x, i.e.
to fix the value of the input x to be 1 for the rest of the
execution. From that point on, execution involving concrete
values follows standard semantics, hence hash(1) will be
executed concretely and its result, hash(1)=10, will be used
for updating PC to Y=103, corresponding to the execution of
the then branch of the conditional at line #3. The negation
of the constraint, corresponding to the else branch, can also
be analyzed easily, so one can generate test cases to cover
the execution of both “S0” and “S1”.
While very simple, this approach can work well in practice

and it was used for example in the EXE tool [3]. However,
it has the drawback that by fixing some symbolic inputs to
concrete values, it may be overly restrictive so it may miss
covering some large parts of the code under analysis. For

3For simplicity we ignore here extra constraints that are due
to casting from int to double
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//hash(x)=10*x 



Mixed Concrete-Symbolic Solving vs DART 

�  DART = Directed Automated Random Testing 
�  Collects symbolic constraints during concrete executions 

�  Both techniques incomplete 

�  Incomparable in power (see paper) 

�  Mixed concrete-symbolic solving can handle only “pure”, 
side-effect free functions 
�  DART does not have the limitation; will likely diverge 



Symbolic PathFinder 

Available from JPF distribution: 
http://babelfish.arc.nasa.gov/trac/jpf/wiki/projects/jpf-symbc 

Combining Symbolic Execution with Model Checking 



Related Approaches 
•  Korat: black box test generation [Boyapati et al. ISSTA’02] 
•  Concolic execution [Godefroid et al. PLDI’05, Sen et al. ESEC/

FSE’05] 
–  DART/CUTE/jCUTE/… 

•  Concrete model checking with abstract matching and refinement 
[CAV’05] 

•  Symstra [Xie et al. TACAS’05] 
•  Execution Generated Test Cases [Cadar & Engler SPIN’05] 
•  Testing, abstraction, theorem proving: better together!  [Yorsh et al. 

ISSTA’06] 
•  SYNERGY: a new algorithm for property checking  [Gulavi et al. 

FSE’06] 
•  Feedback directed random testing [Pacheco et al. ICSE’07] 
•  … 



Current and Future Work 
•  Symbolic execution for program specialization 
•  Thread-modular reasoning 
•  Memoization across multiple SPF runs [ISSTA’12] 
•  Testing for Android applications 
•  Reliability analysis – compute probability of reaching a 

fault state 
•  Invariant generation [SPIN’04] 
•  Program and test repair 



Thank you! 


